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A b s t r a c t  

This paper is concerned with positive-operator-valued measures that are generated by 
modeling quantum measurements in which it is not possible to avoid residual experi- 
mental errors. A positive-operator-valued measure is constructed that has the same 
statistical properties as an observable defined on a Hi|bert space that has a straightforward 
probabilistic interpretation. 

1. I n t r o d u c t i o n  

Positive-operator-valued measures, often also called generalized observables, 
have been introduced during the last years both in theoretical physics (see, 
for example, Jauch and Piron, 1967; Twareque Ali and Emch, 1974; Davies 
and Lewis, 1970; Benioff, 1972) and in some fields of  applications, like the 
theory o f  quantum communications channels and in the theory o f  optimal 
receivers for optical signals (see Helstrom, t970;  Holevo, 1973; and others). 

The main characteristic o f  generalized observables seems to be that, by the 
Naimark theorem (Akhiezer and Glazman, 1963), they are in some way equi- 
valent to observables defined on an appropriate extended Hilbert space. To 
give a physical meaning to such an extended space is a critical, and yet un- 
solved, point for the applications and also represents a challenging theoretical 
problem. 

It is also worth noticing that all authors on this subject seem to agree on 
the fact that it is not possible, in general, to provide a physical interpretation 
of the Naimark theorem. The present paper is concerned with positive-operator- 
valued measures that are generated by modeling "actual quantum measure- 
ments," i.e., quantum measurements in which it is not possible to avoid 
residual experimental errors. 

A simple model for the experimental uncertainty is assumed which leads tO 
a positive-operator-valued measure that has the same statistical properties on 
an observable defined on the tensor product between the Hilbert space associ- 
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ated with the system under consideration and a Hilbert space which can be 
interpreted as the representation of a wide class of  experimental disturbances. 

2. Modeling Experimental Uncertainty 

Let us consider the observable X of some quantum physical system. By 
the theory of quantum mechanics X is represented by a projection-valued 
measure Px(')  defined on some separable Hilbert space H which represents the 
system. 

The physical meaning of that is the following: If an ideal measurement of 
X is performed, then the probability that the observed value of X belongs to 
some Borel set E of the real line is, given the pure state 4, 

px(E/ ~ ) = ( 4 IPx(E) ¢ )H = Tr HPO Px(E) (2.1) 

where PC is the orthogonal projection on the one-dimensional space spanned 
by 4, or, given the general state p 

px(E/p) = TrHPPx(E) (2.2) 

It is apparent that the probability measure Px("/4) has only a theoretical 
meaning in the sense that it does not correspond in general to the actual 
experimental situations. 

The problem that is considered here is how to construct a new probability 
measure fix("/4) that takes into account the experimental errors. 

In previous works (Janch and Piron, 1967; Twareque Ali and Emch, 1974) 
the probability ~(Exo/~), where Exo is an interval having center in Xo, is 
calculated by modeling such a fuzziness with an uncertainty in the localization 
of the rrddpoint Xo. 

It is assumed that the observed midpoint x '  is distributed on the real line 
R according to some probability density fx ° (.) which is supposed symmetric 
around Xo. 

The probability ~(Exo/4) is then calculated by averaging on all possible x '  
in the following way: 

~(Ex o [~) = f (~lPx(Ex')~)fxo(x')dx' = (~1 ~t(Exo)~) (2.3) 
R 

This construction leads to the positive-operator-valued measure defined for 
every interval Exo on the real line, by 

•(Exo) = f Px(Ex')fxo(x)clx' (2.4) 
R 

Following a different line of thinking we simply model here the "observed value 
of a fuzzy measurement" as the sum of the "observed value of an ideal 
measurement" plus an error e. 

Calling y' the observed value of  the imprecise measurement of X, we define 

y '  = y  + e (2.5) 
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where y represents the ideal observed value of X and e is a real random variable 
distributed according to the probability density fo. The function fo is supposed 
symmetric around zero. 

I fy  and e are regarded as two independent random variables having density 
probability, respectively, g~0 (") and fo(" ), the elementary probability rules 
give for the probability density o f y '  

h~ (y') = f g~,fY)fofY' - y)dy (2.6) 
R 

In our case we have, by definition, 

go (y)dy A_ ( ~ IPx(dy) 4) (2.7) 

and then 

h~ (y') = ~ fo(Y' - Y) (~lPx(dy)~) (2.8) 
R 

and, for any Borel set A on the real line 

~x(Z/$) = f f XA(Y')foO"- y)dy' ($lPx(dy)$) = (~IQ(A)~)(2.9) 
R R 

where Q(. ) is the positive-operator-valued measure defined by 

Q(A) = r .I XA (Y')fo(Y' - y)dy'Px(dy), VA E ,~(R) (2.10) 
R R  

It can be interesting to compare the generalized observable Q so constructed 
with that defined in (2.4). 

For this purpose we define the conditional probability 

= f XA(Y') fo(Y ' -y)dy ' ,  A E ~ ( R )  p(A/y) (2.11) 
R 

We can write, for any interval Exo 

Q(Exo) = f p( Xo/y):e (ay) (2.12) 
R 

Now, by observing that, by the symmetry offo 

fo(Y' - Y) = f y(Y') = fy'(Y) (2.13) 

where Jy(-)  is the function fo shifted in order to have its center in y,  we can 
write 

I 'd  ' f p(Exo/Y) fxo (Y')dy' = p(Ey/xo) = _ f y (Y )  Y = j (2.14) 
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Now, calling lEx = the length of the interval Exo and noticing that, from 
(2:11) and (2.I3~, leg 

f P(Exo/Y)dy = IExo = lEy  (2.15) 
R 

We can define the density probability function 

yxo (y) A_ p(Ey/xo)/1Ey (2.16) 

and therefore Q(Exo) can be written as 

( ' d Q(Exo) = - fx,(y)lEyPx(Y) (2.17) 
R 

One can see that Px(Ey)dy in (2.4) has been here substituted by lEyPx(dy), 
thus interchanging the role of the Lebesgue measure with that of the projection- 
valued measure Px. 

3. Fuzzy Measurements as Observables on Extended Spaces 

From the Naimark theorem (Akhiezer and Glazman, 1963) we know that, 
given any positive-operator-valued measure Q(. ) defined on the Hilbert space 
H it is always possible to find an extended space H and a projection-valued 
measure ~ .  ) such that 

(i) H = PHffI (3.1) 

(ii) Q(E) = PHP(E)PH (3.2) 

A straightforward consequence of  the Naimark theorem is the following 
proposition (Holevo, 1973). 

Proposition 1. Let Q(. ) be a positive-operator-valued measure on H. 
Then there exists a Hilbert space/40, a state Po on/40 and a projection- 
valued measure P( . )  on the tensor product Ho ® H  such that 

TrHOQ(E) = TrHo ® H(Po ® P)/7'(E), E @ N(R) (3.3) 

for each state p on H. 

The scope of this section is to identify in the most natural way a triple 
(Ho, Po, 19( . )} which verify Proposition 1 for the positive-operator-valued 
measure defined in (2.10). Let us consider again the conditional probability 
p(. /y)  defined by (2.11). It is immediate to check that 

p(A/y) = f XA (Y + e)fo(e)d(y + e) 
R 

= .f XAy(e)fo(e)cle, A E M(R) (3.4) 
R 
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for every fixed y and Ay being the Borel set obtained by shifting all the points 
of A by y. 

Let now o,q '2 be the set of all absolutely square integrable complex valued 
functions on R. As is well known, 2¢2 is a separable Hilbert space with respect 
to the inner product 

(f[g)~e2 = f f(~)g--~')d~, f E  Xe 2 , g E cj. 2 (3.5) 
R 

Therefore, defined on ~ 2  the projection operator 

we can write 

~-(A y ) f  = XA y " f , f ~ °~ 2 (3.6) 

p(A/y) = (flo/ZtE(Ay)flo/2)~2 = Tr~2P fd'~ -~(Ay) (3.7) 

and then Q(.) takes the form 

Q(A) = f [Tr~2P "f0'̀ 2 G,(Ay)l Px(dy) (3.8) 
R 

Now, given any state p on H, the properties of  the trace and of the tensor 
product spaces immediatly give 

TrHpQ(A) = f Tr~2P fd~ ~ ( A y )  " TrHPPx(dy) 
R 

Tr~ 2 o H(P fd '~ ® P) ~ X(Ay) ® Px(dy) (3.9) 

Defined R 

I~(A) = f E(Ay)® Px(dy) (3.10) 
R 

one can see that the triple ( ~  2, pfd ~2 ' P(A'J} sat~fies Proposition t for the 
positive-operator-valued measure Q( . )  provided P(A) is a projection-valued 
measure defined on .LP 2 ® H. It remains then only to check the three following 
properties. 

(i)/3(A) is a projection defined on c~2 ® H, VA E ~ ( R )  
(ii) IfA and B are any two disjoint Bore1 sets then 

[~(A)P(B) = O ~  2 o H (3.1 t) 

(iii) If {Ai}~-~ 0 is any family of Borel sets such that UiA i = R 
and A i n A J = ~ if i # J then 

~ . P ( A i ) =  ~ d~2® H (3 .12 )  
i 



712 MO RATO 

AS is well known, the right-hand side of (3.10) is by definition the limit of  
Rieman-Stieltjes sums of the type 

~. ~(Ayi) ® ex(Ayi) (3.13) 
l 

where Ay i are intervals such that t2i,Sy i = R, Ay i N &y) = ¢ if i ~ J and the 
limit is done by taking the length of the intervals Ay i smaller and smaller. The 
properties (i) and (ii) of P(A) follow from the analogous properties of  the 
operators defined by (3.13). In fact it is immediate to prove t h a t  '~(Ayi)@ Px(Ayi) 
is a projection Vi. 

In addition we have that, if i ~ J, 

[~(Ayi) (~ Px( Ayi )] [Z(Ayj) @ Px(Ayj)] = ~,.~(ayi) Z(Zy)) @ OH 

= 0 ze2® H = [,~(Ayj) ® Px(Ayj)] F',~_(Ayi) ® Px(Ayi)] (3.14) 

Therefore, since the sum of two projections is a projection if and only if they 
commute, (3.14) implies that any sum of the type (3.13) is a projection, and 
then property (i) is satisfied. [One could notice that ff(A x B) ~ ~(A) ® Px(B) 
defines a projection-valued measure on ~(R2) . ]  

To prove property (ii) let us consider, for two disjoint Borel sets A and B, 
the product 

( ~. Z(Ayi) @ Px(Ayi) ) (~. ~(Byj) Q Px(Ayj)) 
l j 

= ~ Z(Ayi)X(ayj) ®Px(Ayi)Px(Ayj) (3.l 5) 
iJ 

We have 

and 

Px(Ayi)P x (Ayj) = O H if i ~ J (3.16) 

-'--,(Ayi)E(Byj) = O ~  z if i = J (3.17) 

since A (q B = ~ implies Ay i A By i = 96, both A and B being shifted byyi. 
The product in (3.15) is then always zero. 

Finally, given any family of Borel sets (A K )K°°_-0 such that U~A K = R and 
A ~ J N A = ~ if t0 :~J  one can immediately check that 

~°(AK)=~K I 7'(AS)®Px(dy)= f O~2@Px(dy)=D~2(~ BH 
R n (3.18) 

and therefore property (iii) is also proved. 

4. Conclusions 

By modeling in a simple way the experimental uncertainty a positive- 
operator-valued measure has been constructed that has the same statistical 
properties as the projection-valued measure f i( .) ,  provided that for the dis- 
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turbance e (supposed independent from the "ideal observed value"!) the 

state Po = P y°l~ is given. 
The probability density function f o, which gives the statistical properties 

of  the disturbance, is only required to be symmetric and I_ebesgue integrable. 
As a consequence its square root belongs to the ~qa2 space, which plays here 

the role o f  "the separable Hilbert space representing the disturbance." 
The unit norm vector fo t/2 represents "the (pure) state of  the disturbance" 

in the usual quantum notation. 
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